Contextual Emergence of Mental States from Neurodynamics

Harald Atmanspacher, Robert Bishop, Peter beim Graben

Institute for Frontier Areas of Psychology, Freiburg, Germany
Philosophy Department, Wheaton College, Wheaton IL, USA
School of Psychology, University of Reading, UK
1 Interlevel Relations

2 Statistical Mechanics and Thermodynamics

3 Neurodynamics and Mental States

4 Stable Partitions and Symbolic Dynamics

5 First Tests and Perspectives
social systems – collective behavior
embodied systems – behavior
mental systems – consciousness
neural systems – action potential
non-equilibrium systems – order parameters
thermal systems – thermodynamic variables
many-particle systems – moments of distributions
quantum systems – canonical observables
social systems – collective behavior
embodied systems – behavior
mental systems – consciousness
neural systems – action potential
non-equilibrium systems – order parameters
thermal systems – thermodynamic variables
many-particle systems – moments of distributions
quantum systems – canonical observables
<table>
<thead>
<tr>
<th></th>
<th>\mathcal{L} contains necessary conditions for \mathcal{H}</th>
<th>\mathcal{L} contains sufficient conditions for \mathcal{H}</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong reduction</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>supervenience</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>contextual emergence</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>radical emergence</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Bishop and Atmanspacher 2006
Supervenience: \(\mathcal{L} \) sufficient but not necessary for \(\mathcal{H} \)

A thermodynamic system (\(\mathcal{H} \)) can be multiply realized by a many-particle system (\(\mathcal{L} \)) as long as the statistical distribution of particular particle properties in \(\mathcal{L} \) satisfies particular conditions.

\(\mathcal{L} \): many configurations of particles with \(q_i, p_i \), associated with \(\langle E_{kin} \rangle \)

\(\mathcal{H} \): temperature \(T \) can be related to \(\mathcal{L} \) by \(T \propto \langle E_{kin} \rangle \)

\[\uparrow \]

why correlation for individual realizations?
Contextual emergence: \mathcal{L} necessary but not sufficient for \mathcal{H}

\mathcal{L}: canonical observables, equations of motion, statistical distributions

\mathcal{H}: temperature T

can be related to \mathcal{L}

by $T \propto \langle E_{\text{kin}} \rangle$
Contextual emergence: \mathcal{L} necessary but not sufficient for \mathcal{H}

\mathcal{L}: canonical observables, equations of motion, statistical distributions

\mathcal{H}: temperature T

$T \propto <E_{\text{kin}}>$

- select contexts in \mathcal{H}: therm. limit, therm. equilibrium
Contextual emergence: \mathcal{L} necessary but not sufficient for \mathcal{H}

\mathcal{L}: canonical observables, equations of motion, statistical distributions

\mathcal{H}: temperature T

can be related to \mathcal{L} by $T \propto \langle E_{\text{kin}} \rangle$

- select contexts in \mathcal{H}: th. limit, th. equilibrium
- implement them due to stability criteria in \mathcal{L}: KMS states

Statistical Mechanics and Thermodynamics

Neurodynamics and Mental States

Stable Partitions and Symbolic Dynamics

First Tests and Perspectives

Supervenience

Contextual Emergence
Contextual emergence: \mathcal{L} necessary but not sufficient for \mathcal{H}

\mathcal{L}: canonical observables, equations of motion, statistical distributions

\mathcal{H}: temperature T

\Leftarrow can be related to \mathcal{L} by $T \propto \langle E_{\text{kin}} \rangle$

- select contexts in \mathcal{H}: th. limit, th. equilibrium
- implement them due to stability criteria in \mathcal{L}: KMS states
- identify proper coarse graining (topology change) in \mathcal{L}
Contextual emergence: \mathcal{L} necessary but not sufficient for \mathcal{H}

\mathcal{L}: canonical observables, equations of motion, statistical distributions

\mathcal{H}: temperature T

can be related to \mathcal{L}

by $T \propto \langle E_{\text{kin}} \rangle$

- select contexts in \mathcal{H}: th. limit, th. equilibrium
- implement them due to stability criteria in \mathcal{L}: KMS states
- identify proper coarse graining (topology change) in \mathcal{L}
- assign equivalence classes of \mathcal{L}-states to single \mathcal{H}-states with same temperature

Haag et al. 1974, Takesaki 1970
Supervenience: \mathcal{L} sufficient but not necessary for \mathcal{H}

A neural correlate of consciousness can be multiply realized by minimally sufficient neural subsystems (\mathcal{L}) correlated with states of consciousness (\mathcal{H}).

\mathcal{L}: many configurations of neurons with particular properties \implies \mathcal{H}: one mental state (state of consciousness)

↑

why correlation for individual realizations?

Chalmers 2000
Contextual emergence: \mathcal{L} necessary but not sufficient for \mathcal{H}

\mathcal{L}: action potentials, firing rates, correlations in neuronal ensembles

\mathcal{H}: one mental state (state of consciousness)
Contextual emergence: L necessary but not sufficient for H

L: action potentials, firing rates, correlations in neuronal ensembles

H: one mental state (state of consciousness)

- select contexts in H: “phenomenal families”
Contextual emergence: \mathcal{L} necessary but not sufficient for \mathcal{H}

- \mathcal{L}: action potentials, firing rates, correlations in neuronal ensembles
- \mathcal{H}: one mental state (state of consciousness)

- select contexts in \mathcal{H}: “phenomenal families”
- implement them due to stability criteria in \mathcal{L}: SRB states
Contextual emergence: \mathcal{L} necessary but not sufficient for \mathcal{H}

neurodynamics–mental states

\mathcal{L}: action potentials, firing rates, correlations in neuronal ensembles

\mathcal{H}: one mental state (state of consciousness)

- select contexts in \mathcal{H}: “phenomenal families”
- implement them due to stability criteria in \mathcal{L}: SRB states
- identify proper coarse graining in \mathcal{L}: “stable partitions”
Contextual emergence: \mathcal{L} necessary but not sufficient for \mathcal{H}

\mathcal{L}: action potentials, firing rates, correlations in neuronal ensembles

\mathcal{H}: one mental state (state of consciousness)

- select contexts in \mathcal{H}: “phenomenal families”
- implement them due to stability criteria in \mathcal{L}: SRB states
- identify proper coarse graining in \mathcal{L}: “stable partitions”
- assign equivalence classes of \mathcal{L}-states to single \mathcal{H}-states with same phenomenal properties

Atmanspacher & beim Graben 2006
Trajectories of a system in its phase space $X (\mathcal{L})$ are mapped onto strings of a finite set of symbols (\mathcal{H}) by partitioning X into disjoint cells A_i. X is thereby mapped onto a set of symbol sequences s. If these sequences can be generated by a finite transition graph, the symbolic dynamics in \mathcal{H} is a Markov shift.

Stable partitions can be constructed for cyclic or irreducible shifts.
cyclic shift
multiple fixed points
basins of attraction

irreducible shift
chaotic attractor
generating partition
Generating Partitions (Markov Partitions)
Generating Partitions (Markov Partitions)

- Well-defined mental states require coarse grainings in X that are stable under the dynamics in X. Such partitions are:
 (i) basins of attraction for multiple fixed points,
 (ii) generating partitions for chaotic attractors.
Generating Partitions (Markov Partitions)

- Well-defined mental states require coarse grainings in X that are stable under the dynamics in X. Such partitions are:
 (i) basins of attraction for multiple fixed points,
 (ii) generating partitions for chaotic attractors.

- Generating partitions provide a rigorous theoretical constraint for well-defined mental states, independent of their empirical plausibility.

Fell 2004
Generating Partitions (Markov Partitions)

- Well-defined mental states require coarse grainings in X that are stable under the dynamics in X. Such partitions are:
 (i) basins of attraction for multiple fixed points,
 (ii) generating partitions for chaotic attractors.
- Generating partitions provide a rigorous theoretical constraint for well-defined mental states, independent of their empirical plausibility. Fell 2004
- Only generating partitions entail mutually compatible mental descriptions that are topologically equivalent with the underlying neurodynamics. beim Graben & Atmanspacher 2006
Numerical Tests

Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP
Numerical Tests
Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP

• simulate 4 coexisting fixed point attractors with noise
Numerical Tests

Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP

- simulate 4 coexisting fixed point attractors with noise
- determine transition matrix based on 100 x 100 grid
Numerical Tests

Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP

- simulate 4 coexisting fixed point attractors with noise
- determine transition matrix based on 100 x 100 grid
- calculate eigenvalues and corresponding time scales
Numerical Tests
Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP

- simulate 4 coexisting fixed point attractors with noise
- determine transition matrix based on 100 x 100 grid
- calculate eigenvalues and corresponding time scales
- look for gaps between successive time scales
Numerical Tests
Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP

- simulate 4 coexisting fixed point attractors with noise
- determine transition matrix based on 100 x 100 grid
- calculate eigenvalues and corresponding time scales
- look for gaps between successive time scales
- use first eigenvectors for identification of partition
Interlevel Relations
Statistical Mechanics and Thermodynamics
Neurodynamics and Mental States
Stable Partitions and Symbolic Dynamics
First Tests and Perspectives

Numerical Tests
Tests with Empirical Data
Perspectives

Harald Atmanspacher, Robert Bishop, Peter beim Graben

Contextual Emergence of Mental States from Neurodynamics
Tests with Empirical Data

Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP
Tests with Empirical Data

Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP

- 20-channel EEG time series from petit-mal subjects
Tests with Empirical Data

Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP

- 20-channel EEG time series from petit-mal subjects
- 3 principal components: low-dimensional phase space
Tests with Empirical Data
Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP

- 20-channel EEG time series from petit-mal subjects
- 3 principal components: low-dimensional phase space
- 128 x 128 grid: (Markov) transition matrix
Tests with Empirical Data
Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP

- 20-channel EEG time series from petit-mal subjects
- 3 principal components: low-dimensional phase space
- 128 x 128 grid: (Markov) transition matrix
- eigenvalues: corresponding time scales
Tests with Empirical Data
Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP

- 20-channel EEG time series from petit-mal subjects
- 3 principal components: low-dimensional phase space
- 128 x 128 grid: (Markov) transition matrix
- eigenvalues: corresponding time scales
- gaps between time scales: number of relevant eigenvectors
Tests with Empirical Data
Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP

- 20-channel EEG time series from petit-mal subjects
- 3 principal components: low-dimensional phase space
- 128 x 128 grid: (Markov) transition matrix
- eigenvalues: corresponding time scales
- gaps between time scales: number of relevant eigenvectors
- relevant eigenvectors: proper phase space partition
Tests with Empirical Data

Collaboration with Carsten Allefeld & Jiri Wackermann, EAP/IGPP

- 20-channel EEG time series from petit-mal subjects
- 3 principal components: low-dimensional phase space
- 128 x 128 grid: (Markov) transition matrix
- eigenvalues: corresponding time scales
- gaps between time scales: number of relevant eigenvectors
- relevant eigenvectors: proper phase space partition
- partitioned data to be compared with original data
Contextual Emergence of Mental States from Neurodynamics

Harald Atmanspacher, Robert Bishop, Peter beim Graben
Harald Atmanspacher, Robert Bishop, Peter beim Graben

Contextual Emergence of Mental States from Neurodynamics
Can mental or behavioral states be derived from a proper partition provided by a suitable empirically registered neurodynamics?
Can mental or behavioral states be derived from a proper partition provided by a suitable empirically registered neurodynamics?

Potential examples for future work:

• “microstates” as proposed from topographical EEG analyses (Lehmann, Wackermann)
• behavioral states of spontaneously behaving animals from multielectrode signals (Eschenko, Logothetis)
• studies in artificial intelligence, classification of vesicle behavior (Packard)
• compare Markov partitioning with partitions due to correlation analyses (Amari)
Can mental or behavioral states be derived from a proper partition provided by a suitable empirically registered neurodynamics?

Potential examples for future work:

• “microstates” as proposed from topographical EEG analyses (Lehmann, Wackermann)
Can mental or behavioral states be derived from a proper partition provided by a suitable empirically registered neurodynamics?

Potential examples for future work:

- “microstates” as proposed from topographical EEG analyses (Lehmann, Wackermann)
- behavioral states of spontaneously behaving animals from multielectrode signals (Eschenko, Logothetis)
Can mental or behavioral states be derived from a proper partition provided by a suitable empirically registered neurodynamics?

Potential examples for future work:

- “microstates” as proposed from topographical EEG analyses (Lehmann, Wackermann)
- behavioral states of spontaneously behaving animals from multielectrode signals (Eschenko, Logothetis)
- studies in artificial intelligence, classification of vesicle behavior (Packard)
Can mental or behavioral states be derived from a proper partition provided by a suitable empirically registered neurodynamics?

Potential examples for future work:

- “microstates” as proposed from topographical EEG analyses (Lehmann, Wackermann)
- behavioral states of spontaneously behaving animals from multielectrode signals (Eschenko, Logothetis)
- studies in artificial intelligence, classification of vesicle behavior (Packard)
- compare Markov partitioning with partitions due to correlation analyses (Amari)
<table>
<thead>
<tr>
<th>Interlevel Relations</th>
<th>Numerical Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Mechanics and Thermodynamics</td>
<td>Tests with Empirical Data</td>
</tr>
<tr>
<td>Neurodynamics and Mental States</td>
<td>Perspectives</td>
</tr>
<tr>
<td>Stable Partitions and Symbolic Dynamics</td>
<td></td>
</tr>
</tbody>
</table>

First Tests and Perspectives

Harald Atmanspacher, Robert Bishop, Peter beim Graben

Contextual Emergence of Mental States from Neurodynamics
Generating partitions \mathcal{P}, which are stable under the dynamics in X, imply descriptions that are *topologically equivalent* with descriptions based on X. (Then the intertwiner $\pi : X \rightarrow s$ is invertible, $\pi \circ \Phi = \sigma \circ \pi$.)

\[
\begin{array}{c}
X \xrightarrow{\Phi} \Phi(X) \\
\downarrow \pi \quad \quad \quad \downarrow \pi \\
\downarrow \downarrow \\
S \xrightarrow{\sigma} \sigma(S)
\end{array}
\]
Generating partitions \mathcal{P}, which are stable under the dynamics in X, imply descriptions that are \textit{topologically equivalent} with descriptions based on X. (Then the intertwiner $\pi : X \rightarrow s$ is invertible, $\pi \circ \Phi = \sigma \circ \pi$.)

If partitions $\mathcal{P}, \mathcal{P}'$ are not generating, observables based on \mathcal{P} and \mathcal{P}' are \textit{incompatible} (or even \textit{complementary}). Observables are incompatible (complementary) if they do not have all (have no) eigenstates in common.
Entropy of a partition $\mathcal{P} = (A_1, A_2, ..., A_m)$ over phase space X:

$$H(\mathcal{P}) = - \sum_{i=1}^{m} \mu(A_i) \log \mu(A_i)$$

Dynamical entropy of an automorphism $T : X \rightarrow X$ with respect to \mathcal{P}:

$$H(T, \mathcal{P}) = \lim_{n \to \infty} \frac{1}{n} H(\mathcal{P} \vee T\mathcal{P} \vee ... \vee T^{n-1}\mathcal{P})$$

The Kolmogorov-Sinai entropy of T is $H(T, \mathcal{P}_g)$, iff \mathcal{P}_g is generating. Otherwise, $H(T, \mathcal{P}) < H(T, \mathcal{P}_g)$, hence $H(T, \mathcal{P}_g) = \sup_\mathcal{P} H(T, \mathcal{P})$.

- \mathcal{P}_g minimizes correlations among partition cells A_i, so that they are stable under T and only correlations due to T itself contribute to $H(T, \mathcal{P}_g)$. (Spurious correlations due to blurring cells are excluded).
- \mathcal{P}_g allows the definition of symbolic states whose pre-images for $n \to -\infty$ are dispersion-free. (In simple cases: boundaries of A_i are mapped onto one another.)
A **phenomenal family** is a set of mutually exclusive phenomenal states (with phenomenal properties) that jointly partition (some subset of) the space of mental states.

Chalmers 2000
A **phenomenal family** is a set of mutually exclusive phenomenal states (with phenomenal properties) that jointly partition (some subset of) the space of mental states.

Increasingly refined levels of phenomenal families:

Chalmers 2000
A **phenomenal family** is a set of mutually exclusive phenomenal states (with phenomenal properties) that jointly partition (some subset of) the space of mental states.

Chalmers 2000

Increasingly refined levels of phenomenal families:

- **creature consciousness**: being conscious / not being conscious
A **phenomenal family** is a set of mutually exclusive phenomenal states (with phenomenal properties) that jointly partition (some subset of) the space of mental states.

Increasingly refined levels of phenomenal families:

- **creature consciousness**: being conscious / not being conscious
- **background consciousness**: awake / hypnosis / dreaming / sleep

Chalmers 2000
A **phenomenal family** is a set of mutually exclusive phenomenal states (with phenomenal properties) that jointly partition (some subset of) the space of mental states.

Chalmers 2000

Increasingly refined levels of phenomenal families:

- **creature consciousness**: being conscious / not being conscious
- **background consciousness**: awake / hypnosis / dreaming / sleep
- **sensual consciousness**: visual / auditory / tactile / gustatory / olfactory
A **phenomenal family** is a set of mutually exclusive phenomenal states (with phenomenal properties) that jointly partition (some subset of) the space of mental states.

Chalmers 2000

Increasingly refined levels of phenomenal families:

- **creature consciousness**: being conscious / not being conscious
- **background consciousness**: awake / hypnosis / dreaming / sleep
- **sensual consciousness**: visual / auditory / tactile / gustatory / olfactory
- **visual consciousness**: color / form / location / etc.
A **phenomenal family** is a set of mutually exclusive phenomenal states (with phenomenal properties) that jointly partition (some subset of) the space of mental states.

Chalmers 2000

Increasingly refined levels of phenomenal families:

- **creature consciousness**: being conscious / not being conscious
- **background consciousness**: awake / hypnosis / dreaming / sleep
- **sensual consciousness**: visual / auditory / tactile / gustatory / olfactory
- **visual consciousness**: color / form / location / etc.
- **color consciousness**: red / yellow / green / blue / etc.